

DEPARTMENT OF COMPUTER SYSTEM ENGINEERING Digital Integrated Circuits - ENCS333

Dr. Khader Mohammad Lecture #13

Power dissipations

Digital Integrated Circuits

	Course topics and Schedule
	Subject
	Introduction to Digital Integrated Circuits Design
2	Semiconductor material: pn-junction, NMOS, PMOS
3	IC Manufacturing and Design Metrics CMOS
4	Transistor Devices and Logic Design
	The CMOS inverter
5	Combinational logic structures
6	Layout of an Inverter and basic gates
	Static CMOS Logic
8	Dynamic Logic
9	Sequential logic gates; Latches and Flip-Flops
10	Summary : Device modeling parameterization from I-V curves.
	Interconnect: R, L and C - Wire modeling
	Parasitic Capacitance Estimation
	Timing
14	Power dissipation;
	Clock Distribution
16	SPICE Simulation Techniques (Project)
	Arithmetic building blocks
18	Memories and array structures
19	Voltage, package, protection
20	Reliability and IC qualification process
21	Advanced Voltage Scaling Techniques
	Power Reduction Through Switching Activity Reduction
	CAD tools and algorithms
24	SPICE Simulation Techniques (Project)

Impact of Resistance on IC

- We have already learned how to drive RC
- interconnect Impact of resistance is commonly seen in power supply distribution:
 - IR drop
 - Voltage variations
- Power supply is distributed to minimize the IR drop and the change in current due to switching of gates

Resistance and the Power Distribution Problem

Before

After

Requires fast and accurate peak current prediction
Heavily influenced by packaging technology

https://www.apache-da.com/products/redhawk

RI Introduced Noise

Power Distribution

- Low-level distribution is in Metal 1
- Power has to be 'strapped' in higher layers of metal.
- The spacing is set by IR drop, electromigration, inductive effects
- Always use multiple contacts on straps

Where Does Power Go in CMOS?

Dynamic Power Consumption

Charging and Discharging Capacitors

Short Circuit Currents

Short Circuit Path between Supply Rails during Switching

Leakage

Leaking diodes and transistors

Dynamic Power Consumption

Power = Energy/transition $*f = C_L * V_{dd}^2 * f$

- Not a function of transistor sizes!
- Need to reduce C_L , V_{dd} , and f to reduce power.

Dynamic Power Consumption - Revisited Power = Energy/transition * transition rate

$$= C_{L} * V_{dd}^{2} * f_{\theta \to 1}$$
$$= C_{L} * V_{dd}^{2} * P_{\theta \to 1} * f$$
$$= C_{EFF} * V_{dd}^{2} * f$$

Power Dissipation is Data Dependent Function of *Switching Activity*

 $C_{EFF} = Effective Capacitance = C_L * P_{\theta \rightarrow 1}$

 $\mathbf{P}_{0\to 1} = \mathbf{P}_{0} \cdot \mathbf{P}_{1}$ 9

Factors Affecting Transition Activity

- "Static" component (does not account for timing)
 - → Type of Logic Function (NOR vs. XOR)
 - → Type of Logic Style (Static vs. Dynamic)
 - → Signal Statistics
 - → Inter-signal Correlations
- "Dynamic" or timing dependent component
 → Circuit Topology
 - → Signal Statistics and Correlations

Type of Logic Function: NOR vs. XOR Type of Logic Function: NOR vs. XOR

Power Consumption is Data Dependent

Example: Static 2 Input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table of 2 input NOR gate

Assume:

Then:

$$C_{EFF} = 3/16 * C_L$$

Transition Probabilities for Basic Gates

	$P_{0 \rightarrow 1}$
AND	$(1-P_AP_B)P_AP_B$
OR	$(1-P_A)(1-P_B)(1-(1-P_A)(1-P_B))$
EXOR	$(1 - (P_A + P_B - 2P_A P_B))(P_A + P_B - 2P_A P_B)$

Switching Activity for Static CMOS

 $\mathbf{P}_{0\to 1} = \mathbf{P}_0 \cdot \mathbf{P}_1$

Transition Probability of 2-input NOR Gate

 $p_{0->1} = p_0 p_1 = (1-(1-p_a) (1-p_b)) (1-p_a) (1-p_b)$

• $\alpha_{0->1}$ is a strong function of signal statistics

Problem: Reconvergent Fanout

$P(Z=1) = P(B=1) \cdot P(X=1 | B=1)$

Becomes complex and intractable real fast

How about Dynamic Circuits?

Power only dissipated when previous Out = 0

Dynamic Power Consumption is Data Dependent

Dynamic 2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume signal probabilities $P_{A=1} = 1/2$ $P_{B=1} = 1/2$

Then transition probability $P_{0\rightarrow 1} = P_{out=0} \times P_{out=1}$

= 3/4 x 1 = 3/4

Switching activity always higher in dynamic gates! $P_{0\rightarrow1} = P_{out=0}$

Power is Only Dissipated when Out=0! C_{EFF} = P(Out=0).C_L

4-input NAND Gate

Example: Dynamic 2 Input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume: P(A=1) = 1/2 P(B=1) = 1/2

Then:

P(Out=0) = 3/4

Truth Table of 2 input NOR gate

$$C_{EFF} = 3/4 * C_L$$

Switching Activity Is Always Higher in Dynamic Circuits

Transition Probabilities for Dynamic Gates

	$P_{0 \rightarrow 1}$
AND	$(1-P_AP_B)$
OR	$(1-P_A)(1-P_B)$
EXOR	$(1 - (P_A + P_B - 2P_A P_B))$

Switching Activity for Precharged Dynamic Gates

$$\mathbf{P}_{0\to 1} = \mathbf{P}_0$$

Glitching in Static CMOS also called: dynamic hazards

Observe: No glitching in dynamic circuits

Equalize Lengths of Timing Paths Through Design

Short Circuit Currents

Impact of rise/fall times on short-circuit currents

Large capacitive load

Small capacitive load

Short-circuit energy as a function of slope ratio

The power dissipation due to short circuit currents is minimized by matching the rise/fall times of the input and output signals.

Static Power Consumption

 $P_{stat} = P_{(In=1)} V_{dd} I_{stat}$

- Dominates over dynamic consumption
- Not a function of switching frequency

Sub-Threshold Current Dominant Factor

Sub-Threshold in MOS

Lower Bound on Threshold to Prevent Leakage

Equivalent Circuit for Measuring Power in SPICE

$$C_{dt}^{dP}av = ki_{DD}$$

or
$$P_{av} = \frac{k}{C}\int_{0}^{T}i_{DD}dt$$

29

Here it is assumed that $R_p = R_{30}$

- Strong function of voltage (V² dependence).
- Relatively independent of logic function and style.
- Power Delay Product Improves with lowering V_{DD}.

Lower V_{dd} Increases Delay

• Relatively independent of logic function and style.

Reduces the Speed Loss, But Increases Leakage

Interesting Design Approach: DESIGN FOR P_{Leakage} == P_{Dynamic}

Transistor Sizing for Power Minimization

- Larger sized devices are useful only when interconnect dominated.
- Minimum sized devices are usually optimal for low-power.

Reducing Effective Capacitance

Global bus architecture

Local bus architecture

Shared Resources incur Switching Overhead

Power and Ground Distribution

Power

Where

f

- P is the total dynamic power dissipation,
- lpha the signal transition switching activity,
 - the operating frequency of the bus,
- C the load capacitance of the wire line, and
- $V_{_{DD}}$ the swing voltage. Reducing the bus power consumption is usually achieved by using a low swing voltage and operating frequency as well as reducing capacitance and switching activity

 $P = \alpha f C V_{DD}^2$

Prime choice: Reduce voltage!

- Recent years have seen an acceleration in supplyvoltage reduction
- Design at very low voltages still open question(0.6 ... 0.9 V by 2010!)
- Reducing thresholds to improve performance increases leakage
- Reduce switching activity
- Reduce physical capacitance

What will cover

- Aspects of power distribution design
- Power delivery design methodology
- Component behavior
- Modeling techniques

- on the board (right under the supply pins)
- on the chip (under the supply straps, near large buffers)

Aspects of power distribution design

What is the simplest active network?

- Active element (voltage/current source) & Load (consumer of energy)

- Loads are different elements and devices, for example:
 - Capacitors
 - Resistors
 - Inductors
 - Transistors

Aspects of power distribution design (cont.)

- High level of integration in digital systems is directly affected on the power distribution system.
- There are several aspects of power distribution design:
 - PCB (board) stackup
 - Bypass capacitor (decap) selection and placement
 - Voltage partitioning
 - Package, socket and connector selection
 - Pin assignments, including selection of the signal-to-power and signal-to-ground ratios
 - Pin placement

Aspects of power distribution design (cont.)

- The basic goal in power distribution is to minimize inductance & resistance, while optimizing capacitance over a wide frequency range
- Factors that complicate the design:
 - Cost
 - Size limitations
 - Nonideal component behavior (especially for capacitors)
 - Limits on pin counts
 - Limits on signal-to-power & signal-toground ratios
 - Limits on the layer count on the PCB

More Extra

Power delivery design methodology

1. Impedance Concepts

What is an impedance ?

The ratio of voltage to current for exponential waveforms is defined as the impedance Z. For a resistance: $Z_R = R$ in Ohms For an inductance: $Z_1 = sL$ in Ohms For a capacitance: $Z_c = 1/sL$ in Ohms For R, L,C in series: **Z(s) = R + sL+** 1/sL

 $s = \alpha + j\omega \Rightarrow$ complex frequency $\alpha = Re(s) \Rightarrow$ damping factor, $\omega = Im(s) \Rightarrow$ angular frequency. -5 2 2 2 2 2

R

C ...

Power delivery design methodology 2. Impedance Concepts

Power delivery design methodology (cont.) 2. Target Impedance

The power distribution system must work as low-impedance voltage source over a bandwidth from DC to several harmonics of the clock frequency (to minimize the generation of noise, radiation of electromagnetic energy and EMI).

Target impedance Z_T is the maximum allowed impedance for the system to meet a specified noise level.

Power delivery design methodology (cont.)

- 3.Techniques for lowering | Z |:
 - a) packaging,
 - b) PCB stackup,
 - c) bypass capacitor
- a) **Packaging** (include integrated circuit packages, sockets & edge connectors)
 - |Z| is lowerd:
 - -by choosing a packaging component that offers a shorter connection for lower partial self inductance
 - by assigning more pins to power and ground connections

(lower signal/ground & signal/power).

Package styles:

BGA-ball-grid array (C4 bump)

QFP-quad flat pack

BGAs have more pins than GFPs

Power delivery design methodology (cont.)

Ρ

b) PCB stackup

The PCB stackup strongly affects the impedance |Z| of the power distribution system

Multilayer PCB's elements are:

- -cores (two-sided PCBs)
- -pregreg (dielectric sheets)
- -copper sheets

Power delivery design methodology (cont.)

c) Bypass capacitance (decap)

High-performance design require bypass capacitance for four reasons:

1) supplying current bursts for fast switching circuits (near the component, large value);

2) providing an AC connection between power and ground planes for return currents (near the power pins of high-speed component, small value);

3) controlling EMI (distributed, small value);

4) lowering the impedance |Z| of the power distribution system (system design). For all of this uses, capacitors connect the power & the ground planes. The difference is the size and quality of capacitors and their locations.

- ⇒ POR X62 FCPGA3 Design Rules
- \Rightarrow 17um Build up Layer thickness (stretch target)
- **Capacitors** ⇒

•0805 IDC+ Under the die L = 57pH; R = 6.5mOhm

•Outside the die

0805 IDC+ L =2.5 * 57pH; R = 6.5mOhm

1206 L = 220pH; R = 5mOhm (*L is too optimistic; Ansoft modeling*) vields 600pH - 800pH)

Did not account for VTT or PLL capacitor requirements.

Example of

Example: P1262 DT Power Delivery WW17.4 **Power Bussing In Netlist, slide of ATD group**

50

C4 Bump & M6 of Die

Side View

C4 Bump Cross Section

P1262 M2-M6 Power-B. Martell

3D PG: Template for M6, M5 & M4 Panda, GUI

Power Delivery 3-levels Model

Power delivery package to die and die model

Component Behavior

Conductors for power supply & for impulse signals:

 $Z = R + j\omega L \qquad =>R, RL, RLM$

Pins => R

Capacitors:

=> open circuit, RC, RL Transistors: nonlinear & linear models $Z = R + j(\omega L - \frac{1}{\omega C})$

Component behavior

Linear RLC Model and Comparison with Nonlinear Model

waves to VCC-input = 1(t)V step-function were found in vcc & vss on die nodes.

Component Behavior (cont.) Linear and Nonlinear Power Grid Models Results

Modeling techniques

3D Die +Package Distributed Model

2D LM-matrix:

Number Mij:

$$\frac{1}{2}n_{H}*(n_{H}-1)*s_{H}+\frac{1}{2}n_{V}*(n_{V}-1)*s_{V}$$

$$n_H, n_V \Rightarrow # conductors$$

$$s_H, s_V \Longrightarrow \# \sec tions$$

Use large templates: merge several ones into large macros

Four basic templates

One Large template

Modeling techniques

(RC, RLC, RLMC models. Example 80*80, 20 in large, 3 passive & 1 active inverter, c4 bumps current)

62

Summary

We have covered the following topics: Aspects of power distribution design & factors that complicate the design Power delivery design methodology: Impedance Z concept Techniques for lowering | Z |: packaging, PCB stackup, bypass capacitor Components behavior: conductors, capacitors, transistors Modeling techniques: Package+die 3D model Use large template for die Results of simulations (current & voltage input impedance) responses,